Prion species barrier between the closely related yeast proteins is detected despite coaggregation.

نویسندگان

  • Buxin Chen
  • Gary P Newnam
  • Yury O Chernoff
چکیده

Prions are self-perpetuating and, in most cases, aggregation-prone protein isoforms that transmit neurodegenerative diseases in mammals and control heritable traits in yeast. Prion conversion requires a very high level of identity of the interacting protein sequences. Decreased transmission of the prion state between divergent proteins is termed "species barrier" and was thought to occur because of the inability of divergent prion proteins to coaggregate. Species barrier can be overcome in cross-species infections, e.g., from "mad cows" to humans. We studied the counterparts of yeast prion protein Sup35, originated from three different species of the Saccharomyces sensu stricto group and exhibiting the range of prion domain divergence that overlaps with the range of divergence observed among distant mammalian species. All three proteins were capable of forming a prion in Saccharomyces cerevisiae, although prions formed by heterologous proteins were usually less stable than the endogenous S. cerevisiae prion. Heterologous Sup35 proteins coaggregated in the S. cerevisiae cells. However, in vivo cross-species prion conversion was decreased and in vitro polymerization was cross-inhibited in at least some heterologous combinations, thus demonstrating the existence of prion species barrier. Moreover, the barrier between the S. cerevisiae protein and its Saccharomyces paradoxus and Saccharomyces bayanus counterparts was asymmetric both in vivo and in vitro. Our data show that a decreased cross-species prion transmission does not necessarily correlate with a lack of cross-species coaggregation, suggesting that species-specificity of prion transmission is controlled at the level of conformational transition rather than coaggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Basis for Transmission Barrier and Interference between Closely Related Prion Proteins in Yeast*

Replicating amyloids, called prions, are responsible for transmissible neurodegenerative diseases in mammals and some heritable phenotypes in fungi. The transmission of prions between species is usually inhibited, being highly sensitive to small differences in amino acid sequence of the prion-forming proteins. To understand the molecular basis of this prion interspecies barrier, we studied the ...

متن کامل

A heritable switch in carbon source utilization driven by an unusual yeast prion.

Several well-characterized fungal proteins act as prions, proteins capable of multiple conformations, each with different activities, at least one of which is self-propagating. Through such self-propagating changes in function, yeast prions act as protein-based elements of phenotypic inheritance. We report a prion that makes cells resistant to the glucose-associated repression of alternative ca...

متن کامل

Molecular Basis of a Yeast Prion Species Barrier

The yeast [PSI+] factor is inherited by a prion mechanism involving self-propagating Sup35p aggregates. We find that Sup35p prion function is conserved among distantly related yeasts. As with mammalian prions, a species barrier inhibits prion induction between Sup35p from different yeast species. This barrier is faithfully reproduced in vitro where, remarkably, ongoing polymerization of one Sup...

متن کامل

Distinct Type of Transmission Barrier Revealed by Study of Multiple Prion Determinants of Rnq1

Prions are self-propagating protein conformations. Transmission of the prion state between non-identical proteins, e.g. between homologous proteins from different species, is frequently inefficient. Transmission barriers are attributed to sequence differences in prion proteins, but their underlying mechanisms are not clear. Here we use a yeast Rnq1/[PIN(+)]-based experimental system to explore ...

متن کامل

Conservation of the prion properties of Ure2p through evolution.

The yeast inheritable [URE3] element corresponds to a prion form of the nitrogen catabolism regulator Ure2p. We have isolated several orthologous URE2 genes in different yeast species: Saccharomyces paradoxus, S. uvarum, Kluyveromyces lactis, Candida albicans, and Schizosaccharomyces pombe. We show here by in silico analysis that the GST-like functional domain and the prion domain of the Ure2 p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 8  شماره 

صفحات  -

تاریخ انتشار 2007